

 i

White Paper

A Tour beyond BIOS Using Intel ®

VT-d for DMA Protection in UEFI

BIOS

Jiewen Yao

Intel Corporation

Vincent J. Zimmer

Intel Corporation

January 2015

 ii

Executive Summary

This paper presents on a design methodology for using Intel VT-d in a UEFI BIOS for

purposes of resisting DMA attacks against the host UEFI firmware from devices.

Prerequisite
This paper assumes that audience has EDKII/UEFI firmware development experience.

This paper also assumes that the audience has basic knowledge of PCI and DMA.

 iii

Table of Contents

Overview ... 4

Introduction to VT-d ... 4

Introduction to the EDKII ... 4

Goal and Motivation .. 5

Intel VT-d introduction... 6

VT and VT-d ... 6

DMA remapping ... 7

Address Translation Structures .. 7

BIOS responsibility .. 11

UEFI support for DMA .. 13

PCI Bus for DMA .. 13

Support Greater-Than 4GiB DMA request ... 13

Using VT-d in UEFI BIOS ... 15

DMA protection driver component ... 15

Step1: Scan PCI hierarchy ... 16

Step2: Parse DMAR ACPI table .. 16

Step3: Setup DMAR translation table ... 16

Step4: Hook PCI_IO protocol Map/Unmap .. 17

Step5: Enable DMA remapping ... 18

StepX: Grand/Revoke DMA access right when UEFI BIOS running 18

StepZ: Disable DMA remapping .. 18

Known limitations and solutions ... 20

DMA Memory Alignment ... 20

CSM support ... 20

Driver does not follow UEFI specification ... 20

Conclusion .. 22

Glossary .. 23

References .. 24

 4

Overview

Introduction to VT-d

In the PC world, DMA (Direct Memory Access) attack is considered as one hardware related

attack [DMA1] [DMA2] [DMA3]. It can bypass any software check and write to system memory

directly. OS vendors like Microsoft were aware those issues and providing some advocacy to

address a mitigation, such [DMA4], and even promoted this concern to be a requirement in

security reporting interfaces [HSTI] and tests [WHCK System].

In terms of a more generic taxonomy, paging and virtualization hardware within the CPU for

host-based execution isolation are referred to as a the Memory-Management Unit (MMU), and

hardware within is for isolation of I/O devices is referred to as the Input/Output Memory

Management Unit (IOMMU).

Intel Virtualization Technology for Direct I/O [VT-d] is designed for a Virtual Machine Monitor

(VMM), to support I/O virtualization. Since VT-d has the capability for access control, it

provides one possible solution to block a DMA attack.

Introduction to the EDKII

The UEFI specification [UEFI] is adopted in most server, PC, mobile and tablet device designs.

EDKII is an open source implementation for UEFI. The EDKII project has an implementation of the

UEFI Platform Initialization (PI) Driver Execution Environment (DXE) to produce UEFI main

specification prescribed interfaces. The DXE core, likes an OS kernel, has a dispatcher and scheduler

to run other drivers, and the DXE core also produces services and functions that architecturally

required by UEFI. In the DXE phase, some drivers are responsible for system integrity. For example,

the DXE security architecture protocol (SAP) will check the signature of UEFI images when UEFI

secure boot is enabled. The DXE core and DXE security architecture protocol maintain important

data structures that need to be protected.

Summary
This section provided an overview of Intel VT-d and EDKII.

 5

Goal and Motivation

Most UEFI BIOS implementations for Intel platforms report a VT-d-related ACPI table to expose the

VT-d capability of the platform. However, most UEFI BIOS’s today only reports the capability and

do not enable any DMA remapping unit for protection of the DXE core and DXE/UEFI drivers.

In this paper, we will present one possibility methodology on how to enable the DMA remapping

unit in UEFI to prevent DMA attacks against UEFI services and functions. This allows for the critical

drivers to be protected and integrity maintained in UEFI BIOS throughout the boot.

Summary
This section provided the goals and motivation for using VT-d in UEFI.

 6

Intel VT-d introduction

VT and VT-d

Intel Virtualization Technology (VT) is a processor feature that enables the concurrent execution

of multiple operating systems and applications in independent partitions. Each partition behaves

like a virtual machine (VM) and provides isolation and protection across partitions. A Virtual-

Machine Monitor (VMM) acts as a host and has full control of the processor(s) and other

platform hardware.

Intel Virtualization Technology for Directed I/O (VT-d) is for IO virtualization, which provides

capability of
 I/O device assignment: for flexibly assigning I/O devices to VMs and extending the protection

and isolation properties of VMs for I/O operations.

 DMA remapping: for supporting address translations for Direct Memory Accesses (DMA) from
devices.

 Interrupt remapping: for supporting isolation and routing of interrupts from devices and

external interrupt controllers to appropriate VMs.
 Interrupt posting: for supporting direct delivery of virtual interrupts from devices and external

interrupt controllers to virtual processors.

 Reliability: for recording and reporting of DMA and interrupt errors to system software that
may otherwise corrupt memory or impact VM isolation.

VT-d and VT are different features. They can be enabled independently from technical

perspective. A solution may activate VT only without VT-d, if there is no DMA concern. Or a

solution may active VT-d only without VT, if there is no need for system partitioning, or

separation of host-based execution.

For example, the OS can also use VT-d on DMA remapping feature for below purposes:
 OS Protection: An OS may define a domain containing its critical code and data structures, and

restrict access to this domain from all I/O devices in the system. This allows the OS to limit
erroneous or unintended corruption of its data and code through incorrect programming of

devices by device drivers, thereby improving OS robustness and reliability.

 Feature Support: An OS may use domains to better manage DMA from legacy devices to high

memory (For example, 32-bit PCI devices accessing memory above 4GB). This is achieved by
programming the I/O page-tables to remap DMA from these devices to high memory. Without

such support, software must resort to data copying through OS “bounce buffers”.

 DMA Isolation: An OS may manage I/O by creating multiple domains and assigning one or
more I/O devices to each domain. Each device-driver explicitly registers its I/O buffers with

the OS, and the OS assigns these I/O buffers to specific domains, using hardware to enforce

DMA domain protection.

 Shared Virtual Memory: For devices supporting PCI-Express capabilities – PASID (Process

Address Space ID) [PCIExpress], OS may use the DMA remapping hardware capabilities to

share virtual address space of application processes with I/O devices. Shared virtual memory

along with support for I/O page-faults enable application programs to freely pass arbitrary
data-structures to devices such as graphics processors or accelerators, without the overheads

of pinning and marshalling of data.

In this paper, we will focus on the DMA remapping feature only. For more detailed information

regarding features of VT-d, such as Interrupt remapping or Interrupt posting, please refer to [VT-

d] specification.

 7

DMA remapping

The key concept of DMA remapping is address translation. See below figure 3-5 from the [VT-

d] specification. The left hand side is for processor virtualization, and the right hand side is for

IO virtualization. On the right hand side, both device 1 and device 2 want to access 0x4000

memory address. The DMA remapping unit (DMA memory management) can map guest

physical address (GPA) to host physical address (HPA). As final result, device 1 access host

physical address 0x6000 and device 2 accesses host physical address 0x3000.

Address Translation Structures

In order to let devices find the proper host physical address, the DMA remapping unit needs to

be set up with a “translation table” for each device.

Initially, the system has its root-table functions as the top level structure to map devices to their

respective domains. The location of the root-table is in the VT-d register named Root Table

Address Register. The root table contains 256 root-entries to cover the PCI bus number space

(0-255). Each root-entry contains a context-table pointer. Each context-table contains 256

entries, with each entry corresponding to a PCI device function on the bus. Each context-entry

contains a second level page-table pointer. So for each PCI device (with bus number, device

number and function number), there is an address translation structure (second level page-table)

associated. See below figure 3-7 from [VT-d] specification.

 8

Next, the address translation structure for the second level page table is similar to the page table

of CPU. The difference is that second level page table of VT-d uses X (execution), W (write), R

(read) bits, whereas CPU page tables uses XD (executable), Read/Write(RW), P(Present) bit for

execution, write and read access control. So the entry names are changed to SL-PML4E, SL-

PDPE, SL-PDE, and SL-PTE. See below figure 3-9 and 3-39 from [VT-d] specification.

The full translation process is:

1) Parse root-table and context table (Illustrated in Figure 3-7)

2) Parse second level page table. (Illustrated Figure 3-9)

 9

 10

If the VT-d register Root Table Address Register has the extended bit set, the table is an instance

of an extended-root-table, which points to extended-context-table. Each extended-context-

entry contains PASID-table (Process Address Space ID) or second level page table (without

PASID). The PASID-table has PASID-entry, which points to first level page table. The first

level page table uses same paging structure as Intel® 64 processors in 64-bit mode.

Devices report support for requests-with-PASID through the PCI-Express PASID Capability

structure. PASID Capability allows software to query and control if the endpoint can issue

requests-with-PASID that request execute permission (such as for instruction fetches) and

requests with supervisor privilege.

 11

BIOS responsibility

The system BIOS is responsible for detecting the remapping hardware functions in the platform

and subsequently reporting the remapping hardware units to system software through the DMA

Remapping Reporting (DMAR) ACPI table. For details on the ACPI table definition, please refer

to the [VT-d] specification.

In the ACPI table, the first important data structure is DMA Remapping Hardware Unit

Definition (DRHD). Every DMA remapping unit should have a DRHD structure associated with

it. System should have at least one DRHD. Each DRHD may cover 1 or more PCI devices. For

example, see below figure 8-31 from [VT-d] specification. DRHD#1 has under its scope all

devices downstream to the PCI-Express root port located at (dev:func) of (14:0). DRHD#2 has

under its scope all devices downstream to the PCI-Express root port located at (dev:func) of

(14:1). DRHD#3 has under its scope a Root-Complex integrated endpoint device located at

(dev:func) of (29:0). DRHD#4 has under its scope all other PCI compatible devices in the

platform not explicitly under the scope of the other remapping hardware units. In this example,

this includes the integrated device at (dev:func) at (30:0), and all the devices attached to the

south bridge component.

 12

When the OS parses this ACPI table, it can know which PCI device is managed by which DRHD

unit. Then OS will set the translation table for those device PCI devices only for one specific

DRHD unit.

The second important data structure is Reserved Memory Region Reporting (RMRR). BIOS may

report each such reserved memory region through the RMRR structures, along with the devices

that requires access to the specified reserved memory region. Reserved memory ranges that are

either not DMA targets, or memory ranges that may be target of BIOS initiated DMA only

during pre-boot phase (such as from a boot disk drive) must not be included in the reserved

memory region reporting.

In this paper, we will focus on DRHD and RMRR usage in UEFI. So the rest tables, including

Root Port ATS Capability Reporting (ATSR), Remapping Hardware Static Affinity (RHSA), and

ACPI Name-space Device Declaration (ANDD) are not discussed here. Please refer to [VT-d]

specification for more detail.

Summary
This section gives brief introduction on how Intel VT-d works.

 13

UEFI support for DMA

PCI Bus for DMA

The UEFI specification defines the PCI_ROOT_BRIDGE_IO protocol, which provides an IO

abstraction for a PCI Root Bridge that is produced by a PCI Host Bus Controller. The UEFI

specification also defines PCI_IO protocol, which provides functions for purposes of memory

and I/O access on a PCI controller.

In order to support DMA, the PCI_IO protocol defines the Map/Unmap() API. The Map()

function provides the PCI controller–specific addresses needed to access system memory. This

function is used to map system memory for PCI bus master DMA accesses. For example, a PCI

device driver (e.g. EHCI, XHCI, or AHCI) needs to call PCI_IO.Map() to input a system

memory address and get device address out. Then PCI device driver can program the device

address to the hardware DMA register. When the DMA process is finished, the PCI device needs

to call PCI_IO.Unmap() to release the corresponding resources.

In EDKII, the PCI bus driver can be found at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/PciBusDxe. The EHCI

driver is at https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/EhciDxe.

The XHCI driver is at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/XhciDxe. ATA AHCI

driver is at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Ata/AtaAtapiPassThru.

The implementation of the PCI_IO.Map/Unmap() service forwards requests to the

PCI_ROOT_BRIDGE_IO.Map/Unmap() services directly. The PCI Root Bridge driver is

platform specific. For example, on a traditional x86 platform, the PCI Root Bridge driver just

return same address of host memory, because the x86 architecture can guarantee the DMA and

cache are consistent. An I/O agent can perform direct memory access (DMA) to write-back

memory and the cache protocol maintains cache coherency.

In EDKII, the sample PCAT PCI Root Bridge driver can be found at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/PcAtChipsetPkg/PciHostBridgeDxe

For some hardware where device memory and system memory is cache-coherent, such as x86,

omission of this call would not be detected. But omission of this call can pose a compatibility

problem, such as found when some of the above drivers were ported to ARM-based platforms

and these calls were not appropriately used.

Support Greater-Than 4GiB DMA request

In some platforms, the DMA operation is only supported for 32-bit memory addresses, or for

less-than-4GiB. But the requested host memory might be greater than 4GiB. For

BusMasterCommonBuffer, this scenario should not happen because the

BusMasterCommonBuffer will be allocated by PCI_IO.AllocateBuffer, which guarantees the

buffer is suitable for DMA. For BusMasterRead or BusMasterWrite, in the Map() function, the

PCI Root Bridge may allocate below 4GiB memory, and return this sub-4GiB memory. Then it

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/PciBusDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/EhciDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Pci/XhciDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Ata/AtaAtapiPassThru
https://svn.code.sf.net/p/edk2/code/trunk/edk2/PcAtChipsetPkg/PciHostBridgeDxe

 14

synchronizes greater-than-4GiB memory content to below-4GiB memory before BusMasterRead

in Map(), or it synchronizes below-4GiB memory content to greater-than-4GiB memory after

BusMasterWrite in Unmap(). Finally the allocated below-4GiB memory will be freed in the

Unmap() function.

Summary
This section describes UEFI support for DMA and the EDKII implementation of a PCI driver to

support DMA requests.

 15

Using VT-d in UEFI BIOS

Currently, most UEFI BIOS implementations only expose the DMAR ACPI table to report the

VT-d capability. These implementations do not setup device translation table or enable the DMA

remapping unit. Now, with more and more attacks to boot loader and firmware, there is a

requirement to let firmware enable DMA just for the boot device and protect the physical

memory from unauthorized internal DMA and all external DMA. As such, configuring the DMA

remapping unit and use it in firmware can meet such requirement.

This problem is aggravated by BIOS extensions, or UEFI drivers and applications. Even though

art like UEFI Secure Boot [SB] can identify the provenance of code, this identification does not

necessarily prevent malicious behavior by these extensions. In addition, some platforms may not

enable UEFI Secure Boot or operate with the feature disabled by the platform owner.

In rest part of this section, we will introduce how to use DMA remapping unit in firmware. We

assume this work is done by a driver named the DMA protection driver.

DMA protection driver component

The DMA protection driver consists of 4 major components:

1) DMAR ACPI table parser: It parses DAMR table and retrieves the DRHD on DMA

remapping unit information and RMRR on reserved memory information.

2) VT-d engine management: It accesses the DMA remapping unit hardware register to

enable or disable DMA remapping.

3) Translation table: It sets up DMAR root table, context table, PASID table, first level page

table, or second level page table for PCI devices.

 16

4) DMA protection hook: It hooks the PCI_IO.Map/Unmap function. Once the PCI device

driver requests DMA access via PCI_IO.Map, the DMA protection driver can grant DMA

access in translation table. After the DMA transaction is finished, the PCI device driver

may call PCI_IO.Unmap to free resource, at which point the DMA protection driver

needs to revoke DMA access in the translation table.

Step1: Scan PCI hierarchy

In order to set up the DMA remapping unit, the DMA protection driver needs to understand the

entire PCI hierarchy. In EDKII, the PCI bus driver will perform PCI bus enumeration and assign

memory-mapped I/O (MMIO) and IO resource for each of the PCI devices. After that, the PCI

bus driver will install the PCI enumeration complete protocol, and then install a PCI_IO protocol

instance for each PCI devices. The DMA protection driver can register for PCI_IO protocol

notification so that once a new PCI_IO is installed, the DMA protection driver knows the PCI

information and records it to a global variable inside the DMA protection driver.

Step2: Parse DMAR ACPI table

The UEFI BIOS will report DMA remapping capability via the DMAR ACPI table. In most

platforms, this DMAR table is installed by a silicon driver, and it will be ready before

END_OF_DXE event, which is defined in PI specification. As such, the DMA protection driver

registers for END_OF_DXE event notification. Once the platform signals this event, the DMA

protection can get the ACPI table from the UEFI system configuration table, which is defined in

UEFI specification.

The DMA protection driver needs get the DRHD on DMA remapping unit information and save

the content in a driver global variable. The DMA protection driver also needs to get RMRR on

system reserved memory information and always grant DMA access to this memory. In current

BIOS implementations, most platforms will report the reserved memory for legacy USB, and

video buffer for legacy video option ROM of the integrated graphic device. After this, the

VMM/OS will setup 1:1 mapping DMA translation table for them during system boot to make

sure those devices still working.

Step3: Setup DMAR translation table

Once the DMA protection driver gets the PCI hierarchy and DMA remapping unit information, it

can set up the translation table.

The root-table and context-table should only set valid entries for the PCI devices declared in

current DRHD. For those PCI devices not declared in DRHD, the root-table entry or context-

table entry should be all zero. In order to save space, all context-table entries can point to one

translation table entry per the DMA remapping unit. Different DMA remapping units should

have different translation tables because the DMA remapping unit may have different

capabilities, such as 1GiB/2MiB page support or Guest Address Width.

 17

By default the translation table entry should have a 1:1 mapping entry but with no access rights

on execute/write/read. Write/Read access rights for certain memory can be granted to certain

devices when the service PCI_IO.Map receives a request from a PCI device driver. Write/Read

access rights for certain memory must be revoked from certain device when PCI_IO.Unmap is

invoked from a PCI device driver.

Step4: Hook PCI_IO protocol Map/Unmap

The DMA protection driver needs to know when it should grant DMA access right to certain

devices. In order to have such knowledge, the driver must know when PCI_IO.Map/Unmap is

invoked. There are at least 2 options here, including:

1) Add a hook for the PCI_IO protocol Map/Unmap function.

2) Update the PCI Root Bridge IO driver to integrate DMA protection capability.

In this study we review a DMA protection driver as a stand-alone solution with could be built

into any UEFI-conformant implementation on Intel hardware, we only discuss option 1. All the

techniques covered can be adopted in option 2, too.

The DMA protection driver needs to record the original PciIo->Map/Unmap function pointer and

replace it with Map/Unmap function in DMA protection driver. A system may have multiple

PCI_IO protocols, so every PCI_IO protocol should be hooked.

 18

Step5: Enable DMA remapping

After the DMAR translation table is set up properly, DMA remapping can be enabled. Each

DMA remapping unit has a set of standard remapping hardware registers. The DMA protection

driver can set the TE (translation enable) bit in Global Command Register to enable DMA

remapping.

After that, the DMA access to system memory is not granted by default, and only DMA access to

the memory declared in RMRR will be granted.

StepX: Grand/Revoke DMA access right when UEFI BIOS running

Once the DMA protection driver has a way to know the PCI_IO.Map/Unmap service locations, it

can update the translation table according to the Map/Unmap request. If a PCI device driver calls

Map with HostAddress and NumberOfBytes, the DMA protection driver needs to find the

translation table for this PCI device, update translation table to grant access right for the

requested memory, and flush Translation Lookaside Buffer (TLB) so that the new entry can take

effect. The DMA protection driver needs to increase the count of access and record this value in

the hardware-ignored field of the translation table because we need consider the situation that

multiple Map functions request access to the same memory.

If a PCI device driver calls Unmap, the DMA remapping unit needs to find the corresponding

mapping, and then find the translation table for this PCI device. The DMA remapping unit needs

to decrease the count of accesses and revoke access rights if and only if the count of accesses

becomes zero. This is important because the DMA remapping unit need to make sure the access

is revoked in last Unmap operation.

StepZ: Disable DMA remapping

The DMA remapping unit may not be able to remain enabled during OS boot. When OS takes

control, the OS may access hardware directly to setup DMA. The PCI_IO.Map hook takes no

effect in this case since all of the drivers listed are boot-services only and dematerialize upon

invocation of the ExitBootServices() call from the OS loader. As such, we have to disable DMA

remapping as the last OS boot step. UEFI specification defines EXIT_BOOT_SERVICES event,

which is last action in BIOS and the OS loader will signal this event to tell the UEFI BIOS that it

is time to teardown services. The DMA protection driver can register this event and disable

DMA remapping in this event callback function. Then the OS can parse the DMAR table, set

DMA translation table according to OS, and enable DMA remapping again to protect OS kernel

data structure.

Summary
This section describes the details on how to use VT-d in a UEFI BIOS.

 19

 20

Known limitations and solutions

DMA Memory Alignment

There is a basic alignment requirement in DMA remapping unit, namely 4KiB, because the unit

of translation table is 4KiB. However, when the PCI device driver submits a request via

PCI_IO.Map, it does not consider the 4KiB alignment. We have several options to resolve the

problem, including:

1) Update all PCI device drivers to make sure each submits 4KiB-aligned requests.

2) Add such a capability in the DMA protection hook. The DMA protection hook can do

similar thing as in the greater-than 4GiB DMA support. If the requested memory is NOT

aligned, the DMA protection hook will allocate aligned memory and return to the PCI

device driver. Then the DMA protection driver will synchronize unaligned memory

content to aligned memory before BusMasterRead in Map(), or synchronize aligned

memory content to unaligned memory after the BusMasterWrite in the Unmap()

invocation. Finally, the allocated aligned memory will be freed in the Unmap() function.

3) Grant DMA access rights for the full page, which covers the requested memory.

Option 1) is a clean solution, but it requires many driver updates. In the current EDKII

implementation, many PCI device drivers just ignore the 4KiB alignment and submit unaligned

request.

Option 2) is a clean solution for the DMA protection driver, but it might have performance

impacts for allocation/free, especially for large memory on disk read/write operations.

Option 3) is easiest one, but it brings the risk of granting DMA access rights to other memory. In

these other memory regions there might be some important data structures.

CSM support

The Compatibility module support (CSM) is designed to let a UEFI BIOS support a legacy OS

boot. There are some special memory usages in the legacy region. For example, some PCI option

ROMs use the Embedded BIOS Data Area (EBDA), some option ROMs use less-than-1MiB

Low memory managed by the Post Memory Manager (PMM), some option ROM use less-than-

16MiB High PMM, and some option ROMs just look for zeroed memory between 0x60000p ~

0x88000p and use such memory directly.

The DMA protection driver does not have such knowledge regarding which legacy memory

region is used by a PCI option ROM. The best way to keep such compatibility is to grant access

to less-than-16MiB memory directly and make sure there are no important data structures there.

Driver does not follow UEFI specification

Last but not least, the DMA protection hook relies upon the PCI device driver implementation to

follow the UEFI specification dictum to call Map/Unmap. If a device driver fails to follow this

rule and uses memory directly, the DMA access is not granted and the device driver will get an

error from the respective device hardware register. There is no way to resolve this flaw but fix

the bug in such a device driver.

 21

Summary
This section describes the known limitations and possible solutions to using VT-d in practice.

 22

Conclusion

VT-d is attractive feature for IO virtualization. It can also be used for DMA protection to

mitigate DMA attacks. This paper describes a way to enable the DMA remapping unit in a UEFI

BIOS to meet emerging OS requirements and threats, namely, protection from internal and

external DMA in the pre-boot phase.

 23

Glossary

ACPI – Advanced Configuration and Power Interface. The specification defines a new interface to

the system board that enables the operating system to implement operating system-directed power

management and system configuration.

DMA – Direct Memory Access.

DMAR – DMA Remapping Reporting table. It is the ACPI table on DMA remapping hardware

units in a platform.

DRHD – DMA Remapping Hardware Unit Definition. It is the structure in DMAR table, which

represents a remapping hardware unit present in the platform.

PASID – Process Address Space ID, in conjunction with the Requester ID, uniquely identifies

the address space associated with a transaction.

PI – Platform Initialization. Volume 1-5 of the UEFI PI specifications.

RMRR – Reserved Memory Range Reporting. It is the structure in DMAR table, which reports

BIOS allocated reserved memory ranges that may be DMA targets.

UEFI – Unified Extensible Firmware Interface. Firmware interface between the platform and

the operating system. Predominate interfaces are in the boot services (BS) or pre-OS. Few

runtime (RT) services.

VT-d – Intel Virtualization Technology for Directed I/O.

 24

References

[DMA1] Forristal, Hardware Involved Software Attacks, Dec 2011,
http://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf

[DMA2] Sang, Nicomette and Deswarte, I/O Attacks in Intel-PC Architectures and

Countermeasures, 2011
http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf

[DMA3] Aumaitre and Devine, Subverting Windows 7 x64 Kernel with DMA attacks, 2010

http://esec-lab.sogeti.com/dotclear/public/publications/10-hitbamsterdam-dmaattacks.pdf

[DMA4] Blocking the SBP-2 driver and Thunderbolt controllers to reduce 1394 DMA and

Thunderbolt DMA threats to BitLocker http://support.microsoft.com/kb/2516445

[EDK2] UEFI Developer Kit www.tianocore.org

[HSTI] Hardware Security Testability Specification http://msdn.microsoft.com/en-

us/library/windows/hardware/dn879006.aspx

[PCIExpress] PCI Express Base Specification, Revision 3.1 http://www.pcisig.com

[SB] Nystrom, Nicoles, Zimmer, “UEFI Networking and Pre-OS Security,” Intel Technology

Journal, Volume 15, Issue 1, October 2011

http://www.intel.com/content/www/us/en/research/intel-technology-journal/2011-volume-15-

issue-01-intel-technology-journal.html

[UEFI] Unified Extensible Firmware Interface (UEFI) Specification, Version 2.4.b

www.uefi.org

[UEFI Book] Zimmer, et al, “Beyond BIOS: Developing with the Unified Extensible Firmware

Interface,” 2nd edition, Intel Press, January 2011

[UEFI Overview] Zimmer, Rothman, Hale, “UEFI: From Reset Vector to Operating System,”

Chapter 3 of Hardware-Dependent Software, Springer, February 2009

[UEFI PI Specification] UEFI Platform Initialization (PI) Specifications, volumes 1-5, Version

1.3 www.uefi.org

[VT-d] Intel Virtualization Technology for Directed I/O specification, Rev 2.3
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/vt-directed-io-spec.html

[WHCK System] Windows Hardware Certification Requirements for Client and Server Systems

http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx

http://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/10-hitbamsterdam-dmaattacks.pdf
http://support.microsoft.com/kb/2516445
http://www.tianocore.org/
http://msdn.microsoft.com/en-us/library/windows/hardware/dn879006.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/dn879006.aspx
http://www.pcisig.com/
http://www.intel.com/content/www/us/en/research/intel-technology-journal/2011-volume-15-issue-01-intel-technology-journal.html
http://www.intel.com/content/www/us/en/research/intel-technology-journal/2011-volume-15-issue-01-intel-technology-journal.html
http://www.uefi.org/
http://www.uefi.org/
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/vt-directed-io-spec.html
http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx

 25

 26

Authors

Jiewen Yao (jiewen.yao@intel.com) is an EDKII BIOS architect, EDKII TPM2

module maintainer, ACPI/S3 module maintainer, and FSP package owner with

the Software and Services Group at Intel Corporation.

Vincent J. Zimmer (vincent.zimmer@intel.com) is a Senior Principal

Engineer and chairs the UEFI networking and security sub-team with the

Software and Services Group at Intel Corporation.

mailto:jiewen.yao@intel.com
mailto:vincent.zimmer@intel.com

 27

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Intel, the Intel logo, Intel. leap ahead. and Intel. Leap ahead. logo, and other Intel product name are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and

other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2015 by Intel Corporation. All rights reserved

